-
AME Seminar
Wed, Oct 02, 2024 @ 03:30 PM - 04:30 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Andres Jared Goza, University of Illinois Urbana-Champaign
Talk Title: Lighting the fuse to enable metamaterials for passive, adaptive flow control
Abstract: Unsteady flow control is challenging in many engineering domains. Active techniques are costly, energy-intensive, and heavy, while passive approaches often lack robustness in handling complex flow dynamics. Metamaterials are structures with engineered architecture, allowing for catered response behaviors to stimuli. These structures offer a transformative potential for flow control by flow-metamaterial interaction, FMI. FMI could allow engineers to leverage architected structures to passively and adaptively produce desired flow responses.
To capitalize on this potential, however, we must first identify which classes of metamaterials are most promising for different flow scenarios, and understand how to align the key metamaterial behaviors with the relevant flow length- and timescales to enable favorable flow-structure interplay. This understanding must account for the behavior of the fully coupled flow-metamaterial system, which will generally yield dynamics with distinct time/length scales from those of the constituent flow/structure systems. Obtaining this understanding requires a suite of computational tools capable of predicting and understanding the flow-structure interplay between the targeted complex flows and modern architected structures.
We present some a-la-carte results on these various challenges and opportunities. We discuss some key metamaterial classes promising for certain flow behaviors. We share some ongoing development of high-fidelity and resolvent computational tools within an immersed boundary framework, currently without flow-structure interplay but being designed to enable robust, versatile computations between flows and a wide range of metamaterials. Finally, for simplified flow-metamaterial configurations, we discuss efforts to synthesize appropriate dimensionless parameters, expressed in terms of key intrinsic properties of the separate flow/structure systems, that govern the FMI system's behavior.
*Andres is grateful for funding from AFOSR to perform the presented work.
Biography: Andres is an Assistant Professor at UIUC. He uses computational techniques to study flow-structure interaction, particularly when the structure has some heterogeneous properties that make the coupled behavior more complex. He is interested in developing high-fidelity and analysis techniques to simulate and understand these dynamics. He also has two young children that bring fun regular surprises, and enjoys running, cycling, squash, and bouldering.
Host: AME Department
More Info: https://ame.usc.edu/seminars/
Webcast: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1Location: Seaver Science Library (SSL) - 202
WebCast Link: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1
Audiences: Everyone Is Invited
Contact: Tessa Yao
Event Link: https://ame.usc.edu/seminars/