
CS Colloquium: Chi Jin (UC Berkeley) Machine Learning: Why Do Simple Algorithms Work So Well?
Thu, Mar 07, 2019 @ 11:00 AM  12:00 PM
Computer Science
Conferences, Lectures, & Seminars
Speaker: Chi Jin, UC Berkely
Talk Title: Machine Learning: Why Do Simple Algorithms Work So Well?
Series: CS Colloquium
Abstract: While stateoftheart machine learning models are deep, largescale, sequential and highly nonconvex, the backbone of modern learning algorithms are simple algorithms such as stochastic gradient descent, or Qlearning (in the case of reinforcement learning tasks). A basic question endureswhy do simple algorithms work so well even in these challenging settings?
This talk focuses on two fundamental problems: (1) in nonconvex optimization, can gradient descent escape saddle points efficiently? (2) in reinforcement learning, is Qlearning sample efficient? We will provide the first line of provably positive answers to both questions. In particular, we will show that simple modifications to these classical algorithms guarantee significantly better properties, which explains the underlying mechanisms behind their favorable performance in practice.
This lecture satisfies requirements for CSCI 591: Research Colloquium
Biography: Chi Jin is a Ph.D. candidate in Computer Science at UC Berkeley, advised by Michael I. Jordan. He received a B.S. in Physics from Peking University. His research interests lie in machine learning, statistics, and optimization, with his PhD work primarily focused on nonconvex optimization and reinforcement learning.
Host: Haipeng Luo
Location: Olin Hall of Engineering (OHE)  132
Audiences: Everyone Is Invited
Contact: Assistant to CS chair