Logo: University of Southern California

Events Calendar



Select a calendar:



Filter October Events by Event Type:



Events for October 19, 2022

  • Repeating EventThe Communications Hub - Academic Writing and Speaking Tutoring for Viterbi Ph.D. Students

    Wed, Oct 19, 2022 @ 10:00 AM - 12:00 PM

    Viterbi School of Engineering Student Affairs

    Workshops & Infosessions


    The Communications Hub offers academic writing and speaking tutoring for Viterbi Ph.D. students! Bring your academic and professional work (at any stage) to faculty at the Engineering in Society Program!

    Drop in hours are in RTH 222:
    Monday: 10-12
    Wednesday: 10-12
    Friday: 10-12

    We also offer online and custom appointments at https://sites.google.com/usc.edu/eishub/home.

    See you at the Hub!

    Location: Ronald Tutor Hall of Engineering (RTH) - 222

    Audiences: Graduate

    View All Dates

    Contact: Helen Choi

    OutlookiCal
  • DEN@Viterbi: How to Apply Virtual Info Session

    Wed, Oct 19, 2022 @ 12:00 PM - 01:00 PM

    Distance Education Network, Viterbi School of Engineering Graduate Admission

    Workshops & Infosessions


    Join USC Viterbi representatives for a step-by-step guide and tips for how to apply for formal admission into a Master's degree or Graduate Certificate program. The session is intended for individuals who wish to pursue a graduate degree program completely online via USC Viterbi's flexible online DEN@Viterbi delivery method.

    Attendees will have the opportunity to connect directly with USC Viterbi representatives and ask questions about the admission process throughout the session.

    Register Now!

    WebCast Link: https://uscviterbi.webex.com/uscviterbi/onstage/g.php?MTID=efa8d194b73b01d91d2427323c1a513d5

    Audiences: Everyone Is Invited

    Contact: Corporate & Professional Programs

    OutlookiCal
  • Center of Autonomy and AI, Center for Cyber-Physical Systems and the Internet of Things, and Ming Hsieh Institute Seminar Series

    Wed, Oct 19, 2022 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Abhishek Cauligi, Jet Propulsion Laboratory

    Talk Title: Enabling Long Range Autonomy for the Next Generation of Spacecraft Robotic Missions

    Series: Center for Cyber-Physical Systems and Internet of Things

    Abstract: Surface rovers have a rich history of use for planetary body exploration, but current rover missions are limited to low operational speeds and require significant ground-in-the-loop management and teleoperation to compute safe paths for the rovers to follow. However, the next generation of proposed planetary surface rover missions require significantly faster operating speeds in order to accomplish the mission tasks and objectives, thereby making autonomy a key enabling technology for such missions. This talk will discuss the challenges ahead in developing, validating, and safely deploying autonomy algorithms for the next generation of spacecraft robotic missions. The first half of this talk will focus on the autonomy architecture for NASA's Cooperative Autonomous Distributed Robotic Explorers (CADRE) mission, a technology demonstration mission that will deliver a team of autonomous rovers to the Moon's Reiner Gamma region in 2024. The latter half of the talk will focus on how recent advances in bridging data-driven approaches with nonlinear optimization can allow for embedding sophisticated planning and decision making capabilities on resource-constrained autonomous systems.


    Biography: Abhishek Cauligi is a Robotics Technologist with the Surface Mobility Group within the Robotics section of NASA's Jet Propulsion Laboratory. He received his B.S. in Aerospace Engineering from the University of Michigan - Ann Arbor in 2016 and his PhD. in Aeronautics and Astronautics from Stanford University under the supervision of Prof. Marco Pavone in 2021, where he was a recipient of the NASA Space Technology Research Fellowship (NSTRF/NSTRGO). His research interests lie in leveraging recent advances in nonlinear optimization, machine learning, and control theory towards planning and control for complex spacecraft robotic systems.

    Host: Somil Bansal, somilban@usc.edu

    Webcast: https://usc.zoom.us/webinar/register/WN_ySGInGwKRKKHX7NHJwTk3Q

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    WebCast Link: https://usc.zoom.us/webinar/register/WN_ySGInGwKRKKHX7NHJwTk3Q

    Audiences: Everyone Is Invited

    Contact: Talyia White

    OutlookiCal
  • AME Seminar

    Wed, Oct 19, 2022 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Simon Park, University of Calgary

    Talk Title: Sensing and Monitoring using Nanocomposite Sensors and Hybrid Copper Conductive Inks

    Abstract: Highly accurate, miniaturized components that consist of a variety of materials will play key roles in the future development of a broad spectrum of products, such as wearable devices, lab-on-chips, subminiature actuators and sensors. With the advent of the Internet of Things (IoTs) and Industrie 4.0, the development of miniature and reliable devices will be far-reaching in the enhancement of quality of life and economic growth.

    Smart polymeric nanocomposites are promising new materials applicable as media for nano-patterned surfaces. Much attention is being paid to carbon-based nanoparticles as fillers in polymer matrices, due to their outstanding mechanical, electrical and thermal properties. In particular, carbon nanotubes (CNTs) and graphenes are effective in the fabrication of electrically and thermally conductive polymer composites compared to metallic particles or carbon black, mainly due to their high aspect ratios (i.e. ~100-1000).

    The sensors consisted of polymer reinforced with multi-walled carbon nanotubes (MWCNTs)/graphenes using a variety of manufacturing techniques. The sensors were electrically poled to generate piezoelectric phases. Both the piezoresistive and piezoelectric characteristics of the nanocomposite were utilized for improved performance of the sensors.

    Another important aspect is cost effective manufacturing of conductive electrode patterns onto flexible substrates is vital for multifunctional and flexible systems. Conventional chemical etching, vacuum deposition and electrodeless plating are expensive and potentially hazardous to flexible substrates. Others have used metallic nanoparticle inks, such as silver nanoparticles, through inkjet printing, but the high cost of silver nanoparticles prevents mass production. We have recently developed a simple method to prepare hybrid copper-silver conductive tracks through flash light sintering. We demonstrate some of examples of the sensors and hybrid copper electrodes developments.

    Biography: Currently Simon S. Park is a professor at the Schulich School of Engineering, Dept. of Mechanical and Manufacturing Engineering, University of Calgary. He is a professional engineer in Alberta, and is an associate member of CIRP (Int. Academy of Production Engineers) from Canada. Dr. Park received bachelor and masters degrees from the University of Toronto, Canada. He then continued his PhD at the University of British Columbia, Canada. He has worked in several companies including IBM manufacturing where he was a procurement engineer for printed circuit boards and Mass Prototyping Inc. dealing with rapid prototyping systems. In 2004, Dr. Park formed the Micro Engineering, Dynamics, and Automation Laboratory (MEDAL, www.ucalgary.ca/medal) to investigate the synergistic integration of both subtractive and additive processes that uniquely provide productivity, flexibility and accuracy to the processing of complex components. His research interests include micro machining, nano engineering, CNT nanocomposites, and alternative energy applications. He has also founded several start-up companies in sensing and oil extractions. He held a strategic chair position in AITF Sensing and monitoring. He is also an associate editor of the Journal of Manufacturing Processes, SME (Elsevier) and International Journal of Precision Engineering and Manufacturing-Green Technology (Springer). Currently, he is directly supervising 40 students and scholars.

    Host: AME Department

    More Info: https://ame.usc.edu/seminars/

    Webcast: https://usc.zoom.us/j/98775609685?pwd=a2lSd01oY0o2KzA4VWphbGxjWk5Qdz09

    Location: Virtual Seminar

    WebCast Link: https://usc.zoom.us/j/98775609685?pwd=a2lSd01oY0o2KzA4VWphbGxjWk5Qdz09

    Audiences: Everyone Is Invited

    Contact: Tessa Yao

    OutlookiCal
  • PhD Thesis Proposal - Chuizheng Meng

    Wed, Oct 19, 2022 @ 03:30 PM - 05:00 PM

    Computer Science

    University Calendar


    Phd Candidate: Chuizheng Meng

    Title: Trustworthy Spatiotemporal Prediction Models

    Committee:
    Prof. Yan Liu (chair)
    Prof. Salman Avestimehr
    Prof. Aram Galstyan
    Prof. Greg Ver Steeg
    Prof. Craig Knoblock


    Abstract:
    With the great success of data-driven machine learning methods, concerns with the trustworthiness of machine learning models have been emerging in recent years. From the modeling perspective, the lack of trustworthiness amplifies the effect of insufficient training data. Purely data-driven models without constraints from domain knowledge tend to suffer from over-fitting and losing the generalizability on unseen data. Meanwhile, concerns with data privacy further obstruct the availability of data from more providers. On the application side, the absence of trustworthiness hinders the application of data-driven methods in domains such as spatiotemporal forecasting, which involves data from critical applications including traffic, climate, and energy. My thesis proposal constructs spatiotemporal prediction models with enhanced trustworthiness from both the model and the data aspects. For model trustworthiness, the proposal focuses on improving the generalizability of models via the integration of physics knowledge. For data trustworthiness, the proposal proposes a spatiotemporal forecasting model in the federated learning context, where data in a network of nodes is generated locally on each node and remains decentralized. Future works towards the completion of the thesis will target at amalgamating the trustworthiness from both aspects and combine the generalizability of knowledge-informed models with the privacy preservation of federated learning for spatiotemporal modeling.

    WebCast Link: https://usc.zoom.us/j/99153030181?pwd=ZGJHK1Zha1VHa2ZVNjRUcUNXaFdPZz09

    Audiences: Everyone Is Invited

    Contact: Lizsl De Leon

    OutlookiCal
  • Prospective Student Webinar:
    Master's & PhD Programs in Engineering and Computer Science

    Wed, Oct 19, 2022 @ 04:00 PM - 05:00 PM

    Viterbi School of Engineering Graduate Admission

    Workshops & Infosessions


    Interested in Master's or PhD programs in engineering or computer science?

    You are cordially invited to meet representatives from the University of Southern California Viterbi School of Engineering on an online webinar.

    Students who have earned or are in the process of earning a Bachelor's degree in engineering, computer science, mathematics, or a hard science (such as physics, biology, or chemistry) are welcome to attend to learn more about applying to our graduate programs.

    The session will include information on the following topics:

    - Master's & PhD programs in engineering, computer science, and data science
    - How to Apply
    - Scholarships and funding
    - Student life at USC and in Los Angeles

    There will also be sufficient time for questions.

    We look forward to seeing you there.

    Register

    WebCast Link: https://usc.zoom.us/webinar/register/WN_3tGcvyo6QiGQFBIyPktdqA

    Audiences: Everyone Is Invited

    Contact: William Schwerin

    OutlookiCal